# **HYBRID LIGHTING SYSTEMS**



International Conference ILUMINAT 2 0 0 9

20 February, Cluj-Napoca

The 5th International Conference ILUMINAT 2009 Sustainable Lighting

> Cluj-Napoca, Romania 20 February 2009

> Dr David Carter University of Liverpool





# **Daylight in buildings**

- Provision of daylight is a powerful design aspiration for modern buildings
- Daylight as a substitute for electric lighting can offer energy savings
- User preference for daylight in working interiors has implications for user satisfaction and wellbeing



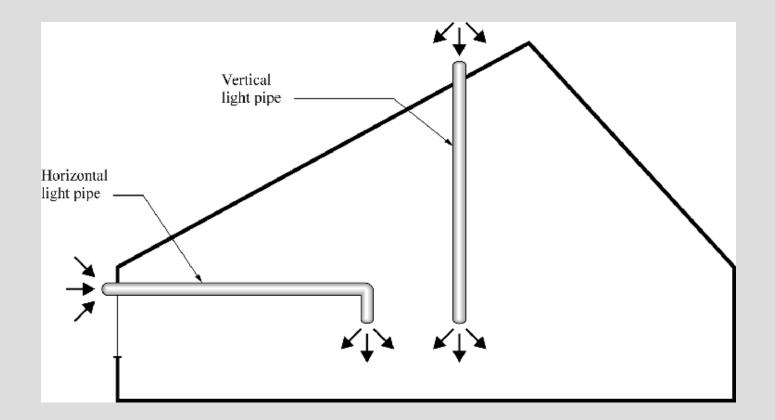


# **Delivery of daylight**

- Windows limited light penetration and possible thermal and acoustic problems
- Enhanced windows 'smart windows' and louvre systems
- Daylight guidance can deliver light to deep plan buildings
- Problem of integration of electric light and daylight






# Approaches to delivery of daylight and electric light

- Tubular daylight guidance + electric lighting
- Integrated lighting systems
- Hybrid lighting systems





#### **Tubular daylight guidance systems (TDGS)**







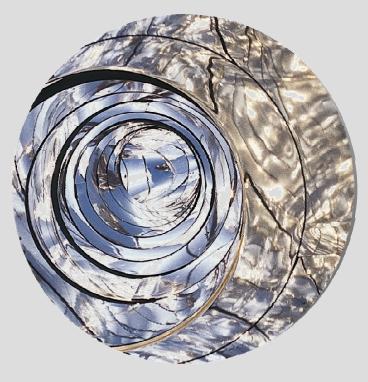
#### **Light collectors**

# Passive collector system on the roof level



# Active sun track system






Internationa

ILUMINAT



# **Tubular light guides**



Guides made of aluminium sheet coated with either silver (95% RF) of multilayer plastic (99% RF)



Straights and bends available





#### **Passive zenithal emitter (1)**








#### **Passive zenithal emitter (2)**



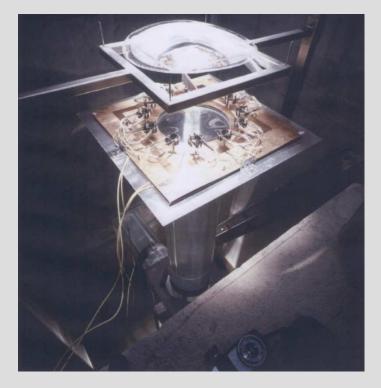








## Active systems



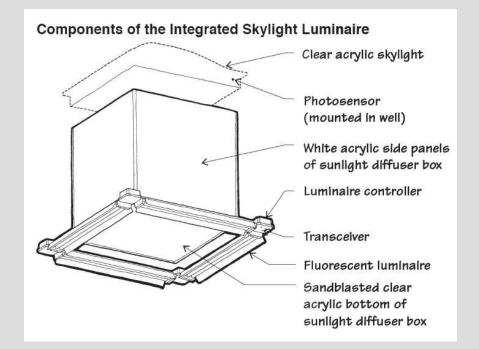







# Active systems

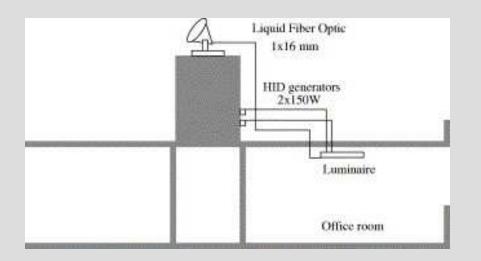









# **Integrated lighting**


- Systems delivering daylight and electric light separately but equipped with control to maximise use of available daylight
- Either uses custom made daylight devices with adjacent linked electric sources.
- Or effectively an 'intelligent' electric lighting system with enhanced controls which seek the maximum benefit from any source of daylight.

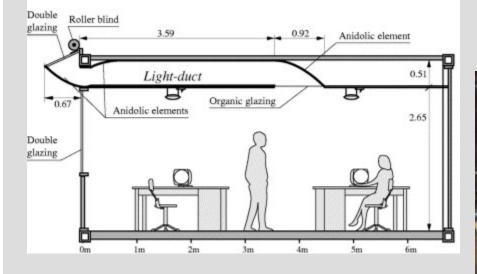






# Principle of hybrid lighting




- •Simultaneously deliver daylight (<u>mainly sunlight</u>) and electric lighting to interior space
- Daylight combined with electric light within luminaires
  Equipped with controls that maximise use of available daylight
- •Optical control similar to an electric-only luminaire



•Collectors on facade or roof



### **Façade mounted collectors - deflecting mirrors**



Collector on façade deflects daylight into duct using mirrors
Light delivered into room up to 10m from façade
Orientation of façade critical factor in performance







### **Façade mounted collectors - Solar Canopy**



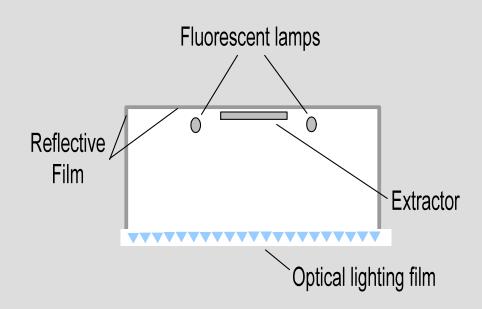


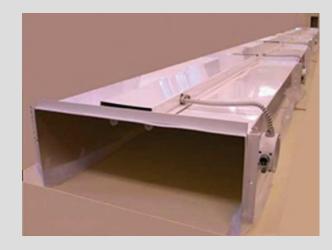


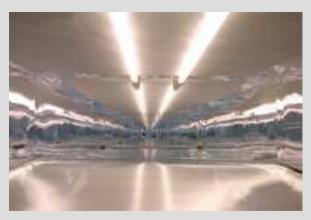
# **Solar Canopy**

- •Developed at University of British Columbia
- •Sunlight is mixed with electric light in the horizontal guide
- •Each lamp is individually daylight linked to produce a near uniform illuminance throughout the room





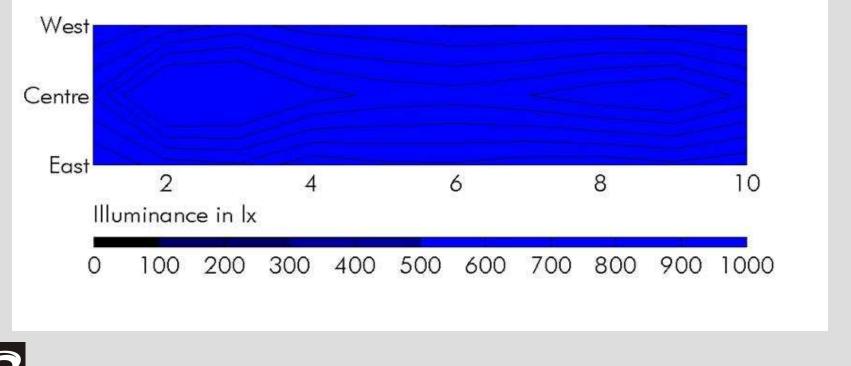


Window Uncovered



#### **Solar Canopy dual-function light guide**












# Solar Canopy - daylight-only illuminance via the light guide

#### Sunny external conditions 90000 lx





**Average Illuminance = 742 lx** 

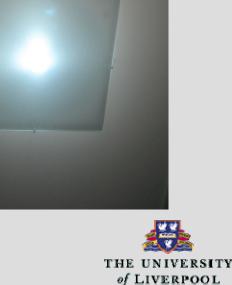


#### **HSL Heliostat system**



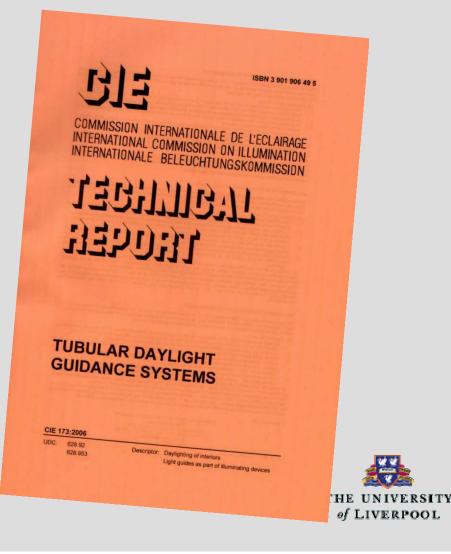
- •Developed by US Government Oak Ridge Laboratory
- •Light transport by optical fibre cable
- •Each luminaire has output of about 6000 lm from an external illuminance of 100000 lux
- Light control similar to diffusing electric luminaireCommercially available




THE UNIVERSITY of LIVERPOOL

### **Parans system**

- Light transport by optical fibre
- Luminaire output 7500 10000 lm from sunny conditions (external 75000 lux)
- NOTE: Under cloudy conditions (external 10000 lux) output is about 1000 lm
- THUS: of limited use in UK latitudes
- Commercially available








# Are systems easy to design? Use CIE Report 173:2006 Tubular daylight guidance systems

- Test method for passive zenithal systems
- Design method for installations to give 'daylight penetration factor'
- Cost/value
- Human response to systems/ design recommendations for comfort
- Case studies for good practice





### **Use of TDGS in buildings**

\*Passive systems mainly used for single storey buildings

\*Better light delivery than roof-lights in deep roof constructions

\*Buildings Regulations in effect treat collectors as rooflights, transport elements as pipes or ducts and emitters as luminaires

\* Systems may occupy valuable floor and roof space









# Use of hybrid systems in buildings

- All require collectors in prominent unobstructed locations on building envelope
- Can be used for up to three storey building if using optical fibre light transport
- Light output by luminaire good light control but danger that building occupants do not realise that it is daylight
- Daylight contribution sufficient to replace electric light during peak daylight hours
- Possibility of use of colour matching lamps to mimic daylight









THE UNIVERSITY of LIVERPOOL

#### **Cost and benefit - what do they cost?**

Approximate capital cost/sq.m. for a number of actual passive TDGS

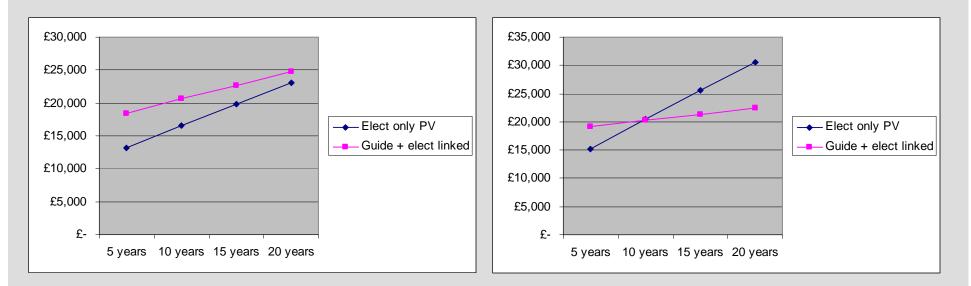
Electric lighting £35-£65

Passive zenithal £35-£75



In contrast approx. capital cost/sq.m. of active zenithal and hybrid £100 - £225








THE UNIVERSITY of LIVERPOOL

#### **Cost and benefit - what do they cost?**

Present value for the top building on previous slide over 20 years



Actual lighting configuration and electricity price £0.07 per KwH

Daylight linking, 2% DPF, and electricity price £0.11 per KwH



Note: Use of TDGS in multi-storey buildings not economic





# Benefits - what do they deliver?

Work plane illuminance typically from 50 to 400lux Average workplane DPF from 0.3 to 1.1%







#### Surface luminance = 1000 - 3000 cd/sq. m.



#### **Benefits - are they liked by users?**

- Surveys of actual TDGS photometric measurement and user questionnaire.
- Inferior to conventional windows in providing quantity and quality of 'daylight'
- Current systems do not produce a 'well day-lit space'
- However systems are acknowledged as 'daylight' providers and appreciated as such by users with consequent benefits in a working environment
- No information yet on user satisfaction of hybrid systems









# Future for TDGS and hybrid lighting?

New light transport materials and devices

New products required:

- integral fire protection
- means of passing light through fire barriers



Possible specification to give long term energy saving and user satisfaction:

- Average work-plane DPF close to 2%
- Average electric lighting illuminance 300 lux (possibly using variable CT lamps?)
- Daylight linking



